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THE ANALYSIS OF TURBULENCE FROM DATA
OBTAINED WITH A LASER VELOCIMETER

By
N. E. Welch and W. J, Tomme

George C. Marshall Space Flight Center
Huntsville, Alabama

ABSTRACT

This investigation concerned the use of a laser velocimeter to deter-
mine point velocities in a turbulent liquid flowing in a pipe. The velocity
distribution was determined at each point and for each rate of bulk flow.
This method of measurement affords data unaffected by any proturber-
ance into the flow stream. The frequency response of the base instru-
ment and electronics is sufficient to measure all frequencies of turbu-
lence investigated.

The data was verified by comparing the mean velocity profile cal-
culated from the probability distribution function with profiles determined
by other methods of mean velocity measurement. The variance of the
distribution function was verified with turbulent diffusion data.

The velocity distribution function, as derived from statistical reason-
ing, was found to properly describe the measured axial velocity components.

The change in the variance of the velocity distribution function is
derived and is compared with the measured variance.
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THE ANALYSIS OF TURBULENCE FROM DATA
OBTAINED WITH A LASER VELOCIMETER

By

N. E. Welchand W, J. Tomme%*
George C. Marshall Space Flight Center

SUMMARY

The Laser Velocimeter was utilized to obtain sampled velocity
data in turbulent flow in a cylindrical pipe section without interrupting
the flow field. The velocity distribution function was measured at
several radii for Reynolds numbers between 4000 and 9500. The mean
velocity and variance were calculated from each distribution function.
The mean velocities were then plotted versus dimensionless radius and
compared to Nikuradse's correlation. The experimental and calculated
values agree within the expected error of measurement of the bulk flow
rate. The intensity of turbulence was also calculated from the mea-
sured distribution functions and was found to be approximately 10 per-
cent higher than values measured with Hot Wire Anemometers. This
difference could be the result of white noise in the signal rather than
more accurate measurements, The longitudinal turbulent diffusion
characteristics of the flow field were also calculated from the velocity
distribution function and compared with published eddy diffusivity data,
However, errors due to assumptions in the calculations and errors in
the published data allowed comparison of only gross effects.

A mathematical expression of the velocity distribution function was
derived on a statistical basis. An expression for the variation of the
distribution function with radius was also derived. Both expressions
were found to agree with the data.

%

Brown Engineering Company, Technical Support Contractor.



INTRODUCTION

The various techniques used to measure the velocity of liquids in
turbulent flow have traditionally involved the use of some device pro-
truding into the flow stream. Most devices of this type also suffer
from sufficient frequency response; hence, turbulent measurements
were difficult. In this investigation, a beam of light is used to measure
velocity through application of the doppler effect. Further, an elec-
tronic system was developed that enables the measurement of the
velocity distribution at a point and with frequency response believed to
be well above that required.

The purpose of this investigation is to define the velocity distribu-
tions for liquids in turbulent flow for various Reynolds numbers and at
several radial positions in the pipe. The velocity distributions were
measured, and from them, the mean and the variance were established.
In addition, the distributions obtained are illustrated revealing the skew-
ness as affected by the radial position in the pipe. The results obtained
provide information on turbulent liquid flow that was not previously
available.

Previous investigators have used eddy diffusion data to determine
inferences concerning the velocity distribution. Foreman, Lewis, and
George (Reference 1) described the technique for using the laser for
doppler measurement in fluids.

DESCRIPTION OF EQUIPMENT

The velocimeter system is composed of three separate ele-
ments, A liquid flow loop provided a constant bulk flow through
a glass tube of 2.2 cm inside diameter. Since the flow system
is standard, it is not described herein. A gas laser is used with
associated optical equipment and is referred to as the optical sys-
tem. The third part of the system is the electronics, which con-
verts the optical measurement into a useable electronic signal,

The Optical System

An He - N gas laser was used to provide a beam of coherent light
that was directed through the glass tube as shown in Figure 1. The focal
point was located at six different positions throughout the course of the




investigation. Light is scattered from the focal point by small particles
in the water. A lens arranged at a known angle was to receive the light
scattered at that angle. This light differs in frequency from the parent
beam due to the doppler effect produced by the motion of the solids in
the water. These two light beams, when recombined on the cathode of

a photomultiplier, produce a heterodyne signal., For the studies
described in this report, the heterodyne frequency was less than 500
KH,. The optical system was mounted on a moveable bed separate
from the glass tube. This feature enabled the traverse of the fluid with-
in the pipe. The optical arrangement was used to measure the longitu-
dinal component of the velocity at the focal point. Concisely, the optical
system provided a heterodyne signal that was directly proportional to the
longitudinal component of the fluid velocity at the focal point.

The Electronic System

The photomultiplier shown in Figure 1 produces a small electrical
signal which is the heterodyne of the two light beam frequencies. This
signal varies both in amplitude and in frequency. The amplitude varia-
tions are caused by several factors including the size of the particles
and their number and location in the scattering volume. The frequency
variations are caused by the changes in liquid velocity. Noise is present
on the signal; a signal-to-noise ratio of one was typical. The amplitude
of the heterodyne varied by as much as 40 db resulting in a highly discon-
tinuous signal., Under these conditions, the use of a system making a
continuous measurement of frequency was subject to much doubt, so the
system shown in Figure 2 was developed. This system measures the
frequency distribution function directly by scanning across the mean
frequency. The relative rate of occurrence of frequencies is then
" determined, and a form of autocorrelation is established.

The signal from the photomultiplier is first amplified and filtered
to remove all of the high frequency noise, including some radio frequency
from the laser. A trigger level is set so that noise alone would not trigger
the system. When the positive half of the heterodyne wave triggers the
system, the '"data one-shot'" produces a very short rectangular pulse. At
the same time, two other one-shots are energized. These are the''sample
delay' and the 'timing' one-shots. The latter two are much longer in
duration than the data pulse. The sample delay one-shot stays energized
for three and one-half time constants of the heterodyne frequency. Its
purpose is to prevent re-trigger of the timing one-shot until the arrival
of the fourth data pulse or a later one. When the timing one-shot turns
off, it simultaneously energized the sample pulse. If this pulse is coin-
cident with a data pulse, the "and-gate'' commands an event pulse which



is of fixed duration. The integration of these pulses would then deter-
mine a relative rate of occurrence at the time period dictated by the
timing one-shot. In normal operation, this timing one-shot was swept
continuously and linearly with time from one-half the period of the
heterodyne frequency to three and one-half periods. The analog voltage
of the integrated event pulse was converted to digital records for entry
to a digital computer.

Another integrator develops an analog voltage proportional to the
average data rate, and this is also digitized., Compensation is made for
any variations in the data rate, because this has a proportional effect on
the output of the other integrator. Normally, the data rate was constant
within five percent over the course of a run.

PRESENTATION OF THE DATA

Velocity distributions were obtained at the center line of the tube
for four Reynold's numbers, and velocity profile measurements were
made at five radii. Figures 3 through 6 show typical velocity distribu-
tions obtained at Reynold's numbers of 4605, 7808, 8510, and 9310.
Since the velocity is directly proportional to the heterodyne frequency,
the velocity distribution functions were derived directly from the hetero-
dyne frequency distributions. Table I shows the results of five series of
runs with as many as eight runs per series. The values for ¢?, the
variance, and ¥, the mean velocity, are average values compiled over all
runs. The average bulk velocity, V, is also shown. Using Nikuradse's
data (2) , the center stream velocity to bulk average velocity ratios
differed over all series by an average error of less than 1 percent.

The variation of the standard deviation with Reynolds number is
shown in Figure 7. Some of this increase in ¢ is a result of the increase
of center stream velocity. This effect is linear by nature. Also indi-
cated is an increase in turbulence with R, as would be expected.

Figure 8 shows a velocity profile obtained by plotting the mean velo-
cities obtained at several radii within the pipe. The continuous curve
represents Nikuradse's data and in general there is very close agree-
ment. Measurements closer to the wall are possible but were incon-
venient due to the changes required; hence, they were not attempted dur-
ing this investigation.

Figure 9 illustrates the variation of the standard deviation with
radius for a Reynolds number of 8510. Indications are that a maximum




is obtained in the vicinity of r /R ratio of 0.75. Considering the shear
created by the tube wall and the high center stream velocity, this maxi-
mum is in the region of maximum probability of eddy motion. The
standard deviation as a function of radius is discussed in detail in a
later section.

The combined velocity distributions obtained at r /R ratios of 0.243,
0.405, 0.566, 0.729, and 0,825 are shown in Figures 10 through 14
respectively. These measurements were made at a Reynolds number of
8510. The center stream distributions were all very nearly normal. A
skewness appears and increases as r approaches R. The mean velocity
in all cases was equal or less than the most probable velocity.

The mean velocity and the variance were calculated by the standard
definitions and are shown as equations (1) and (2).

V=fg(v)vdv (1)
SJg(v)dv

z_lg(v)(v-Vdev (2)
- Jg(v)dv

PROCESSING OF THE DATA

The electronic system delivers a series of three distributions for
each run. These represent the locations of the first, second and third
heterodyne wave peaks following the beginning time as determined by
the leading edge of the timing pulse. These three distributions are
generated by turbulence and some noise. Since the noise is noncoherent,
it is extracted statistically by assuming that the variance attributable to
it is constant for all three distributions, while that for turbulence is not.
This implies that turbulence is coherent over a period of three times the
heterodyne period or approximately 20 micro seconds. A heterodyne
frequency distribution is obtained that can then be directly converted to
velocity by equation (3).

v = K. f (3)

For the optical arrangement used, the value of K was 1.5 x 1074,



ANALYSIS OF THE DATA

Derivation of the Velocity Distribution Function

The probability distribution function for the axial velocity compo-
nent, as utilized herein, can be derived from random walk theory, or
by using the same procedural reasoning as that incorporated in the
derivation of the Maxwell - Boltzmann equation for molecular velocity
distributions in gases. However, since turbulence is a macroscopic
mechanism, and the axial velocity component is an incomplete measure
of that mechanism, one must proceed with reserve and considerable
experimental verification.

Choose a macroscopic spatial cell size A, sufficiently large that
the average molecular velocities are constant and equal for all cells,
but sufficiently small that the large number theory is applicable to the
turbulent region under consideration, and determine the distribution
corresponding to a maximum likelihood of occurrence (canonical distri-
bution). The following equation is obtained.

_Iii_ _Bi Exp (- \ V;?) (4)
N 3 g Exp(-\V;?)

g = a priori probability that a given cell will experience axial
velocity Vj.

N: = number of cells of size A with an axial velocity vj.
N = total number of cells in flow field.
V = Vi - u

v; = instantaneous axial velocity.

u = mean axial velocity
If

gi = o¢(vy) Avy
then

N _ $vi) Exp [« Mvi - w?]Av
N 25 ¢(v;) Exp[-Mv;-u)?]ay;




The continuous approximation is written as follows,
v)Exp [- AMv - u)®]
£(v) = +£() p [ (5)
:Y &(v) Exp [- AMv - u)?] dv

- 00

Where f(v) = —31—;; and f(v)dvis the probability that a cell will experi-

ence an axial velocity between v and v + dv.

The nature of ¢(v)dv can be rationalized from known mean velocity
profiles and shear stress correlations., If no shear is present (-rrZ = 0),
there is no reason to believe that there is any velocity preference, so
one can logically assume that ¢(v)dv @ dv. This, of course, is the con-
dition at the center of the pipe (r = 0). Furthermore, since frictional
losses are known to increase according to v, it can reasonably be
assumed that ¢(v) = 1/v¥, However, the mean velocity profile correla-
tion for R = 10% indicates that x = (r/R)? where R is the radius of the
pipe. This rationalization leads to the relation

dv
$(v)dv « X (6)
Substituting equation (6) into equation (5) gives

Exp [- Mv - u)?]

f(v) = (7)

+00
dv
vxy Exp [~ Mv - u)?] p—
-00

On the axis (r = 0), equation (7) reduces to

Exp [~ Mv - u)?]
>0}

2 \S‘ Exp [- Mv - u)?]dv
5 .

f(v) =

If the indicated integration is performed and X is set equal to 1/2¢2,
the following equation is obtained.




2
f(v) = Exp [_i_v_"__\_ll_] (8)

1
o V’;

From Figure 5, 10, and 11, it is readily seen that for small values
of r/R the distribution is normal,

From Figure 14 it is seen that as r /R approaches 1, the high velo-
city components become less probable than the low velocity components,
as indicated by equation (7). Furthermore, ¢(v) = 1/v* produces the
correct amount of skewness for r/R = 0,83 (Figure 14), indicating that
the rationalization leading to the ¢(v)dv expression may have merit.
However, there is not sufficient data available near the wall to fully
verify the relationship at this time. In view of this, equation (8) was
correlated with the data by correlating ¢ with the radius and the Reynold's
number for a radius ratio of O S r/R £ 0.825 and a Reynold's number of
Rg S 10*, Verification of equation (7) and additional correlations of ¢
will be obtained in the future,

Derivation of the Relationship between Standard
Deviation (0r) and Radius (r)

The equation that describes the relationship between the standard
deviation of the velocity distribution function and the radius is also
derivable from statistical mechanical considerations. This is accom-
plished by determining the most probable distribution of eddies as a
function of volume available per unit length of tube, that is, of volume
available per unit length of tube that is compatible with two known
physical restraints.

The canonical distribution in this case is determined to be

L gi Exp (- BVi) (9)
n 3 giExp (- BV;)

n; = number of eddies with volume Vi'

S
i

volume of eddy group i expressed as a fraction of the total
volume per unit length of pipe.




Let g; = 4 w V,2dV, that is, the a priori probability g is equal to
the fraction of the volume that lies between V. and Vi . Substituting
into equation (9), and writing the continuous function approximation,
the following equation is obtained

_Gn _ Exp (- BV)
P(V) = ndv 1

5 VZ Exp (- pV)dV
0

Performing the indicated integration gives

P(V) = Al VZ Exp (- BV) (10)
Where
p3
Al =
Voo, B +2p +2
Exp (B)

The area under the velocity distribution function between -(v - u)
and +(v - u) is the probability that the axial velocity will lie in this range
and is equal to ko. Since the axial velocity is a result of the eddy condi-
tion, P(V) should be proportional to o; therefore

P(V) = ko

and
- 2

o =A, V° Exp (BV)
where

AV = A{,/k

The fluid is motionless at the pipe wall so 0 -0 as r =R, If as
r =R the volume available for the formation of eddies approaches zero,
the ¢ relationship holds. As r -0, the shear stress approaches zero,

and the fluid has a tendency to form streamlines. Therefore, ¢ should
approach a minimum as r -0 (V -1), and



c=0, at V=1(r=0)

Substituting, gives
0o = Ay Exp (-B)
Furthermore,

= = Exp () V? Exp (-pV) (11)
(o]

Since there is no reason to believe that anything other than volume,

OCrin 2t V=1, and 0 =0 at V =0 restrains the system, it is only
reasonable to assume that o occursat V = 1, so

w ()

a

n
o

oo 5 (8) (29

or B =4
Substituting f = 4, gives

o

9

= Exp (4) V? Exp (- 4V)

However,
RZ - 2 2
Vet ()

therefore,

e [ @ e @) w2

o)

Figure 9 is a comparison of equation (12) and the experimental
data. The solid line is calculated from equation (12) and each data point
is an average standard deviation calculated from several measured dis-
tribution functions.

10




Equation (12) agrees surprisingly well with the data. The calculated
value of 0'/0‘0 deviates from the data less than two percent in the worst

case,

An insufficient amount of data is available at this time to correlate
the standard deviation with Reynold's number. However, the four values
of standard deviation on the axis (0'0) that have been obtained for Reynold's
numbers from 4 x 10 to 0 x 10® are shown in Figure 7. The variation of
o with Reynold's number is approximately proportional to the Reynold's
number to the 0.9 power. the pressure drop in this range is proportional
to the velocity to the 1.7 power, so 0'0z is increasing approximately pro-
portional to the pressure drop.

Check Against Turbulent Diffusion Data

According to Taylor's treatment

vy
ve T (13)

D=
2

Where
D = Eddy diffusivity

v? = Mean square velocity

and T is a time interval sufficiently large that no correlation exists
between v(t) and v(t + T).

Since o2 = v?, v? can be obtained from equation (12).

R
c? = Ezi S.r o (r)dr
0

0? = (54.6)% o2 [1 - (ﬁ)ZT EXP{‘s {l - (LR)Z]}

Substituting and performing the indicated integration, the following
expression is obtained

;'7 =1.93 0'0Z (14)

11



for
cms
o sec

n
™~

Re = 8510 o

and

2
of =17.72 25

Since f(v) is a normal distribution near the axis of the pipe repre-
senting a random distribution, the sampling period required to establish
f(v) is equal to the time required for invariance (T). At the Reynold's
number under consideration, this was found to be approximately twenty
seconds., This time was determined by sampling through increasingly
larger periods of time and plotting f(v) for each sampling period. The
sampling time required for the normalized velocity distribution function
(f(v)) to remain unchanged by increasing the sampling time was deter-
mined.

A set of distribution functions so determined are shown in Figure 15.
These functions are not normalized so that the last two curves will not
fall on top of one another. However, it can be seen that T =20 secs.

Substituting into equation (13), yields

SZ

D= 77.2 228
secC

Eddy diffusivity was determined for the corresponding value of
Reynold's number using turbulent mixing data and was found to be 89
cms?/sec. Therefore, agreement was obtained within the author's
ability to determine T and D experimentally.

When T is small, v(t + T) v(t) = v? (t); that is, the correlation coeffi-
cient is approximately unity. In this case a tracer will diffuse to produce
a distribution function of the same form as the velocity distribution
function.

Experiments were devised to measure the concentration of a salt
tracer downstream from the point of injection. A pulse of salt tracer
with a time interval of less than 0.1 second was introduced at X = 0, and
the conductivity was measured as a function of time at different values of
X (distance downstream). Figure 16 is an illustration of the results of
one such run. As indicated in Figure 16, the data more closely approxi-
mates a normal distribution than the distribution calculated from the eddy

12




diffusion model. Since the point of measurement is close to the source
and the eddy diffusion model does not produce the same shape of curve
as the data, it may be surmised that the distance downstream from the "
source is sufficiently small that the measured distribution is more
closely associated with the distribution of the velocity of fluctuation.
Therefore, the fact that the data shown in Figure 16 approximates a
normal distribution indicates that the velocity distribution function that
produced the diffusion was normal. This is, of course, compatible with
the correlated velocity distribution functions. If the concentration
gradient is measured at a point sufficiently distant from the source, the
eddy diffusion model will apply regardless of the form of the velocity
distribution function and will not be indicative of the latter.

13




CONCLUSIONS

The measured velocity distribution function is verified for both its
mean value and the variance. The mean velocities were verified with
existing data by Nikuradse, and a profile in radius of the mean values
is shown.

The shape of the measured distribution function agreed with concen-
tration gradients measured near the source. The measured variances
were verified by calculating the corresponding eddy diffusivities and
comparing them with the measured eddy diffusivities.

The general velocity distribution function was established with data
and a statistical derivation. The general velocity distribution function
accounts for the increase in skewness in the distribution function that
appears as the radius approaches the pipe wall. The authors do not
feel that sufficient data is yet available near the wall to completely con-
firm the general velocity distribution function; however, the existing
data shows good agreement. Further, the velocity distribution, as
measured near the center of the pipe, is a normal distribution that is
in agreement with the derived general velocity distribution function.

It was established that the distribution function and the variation in
radius agreed with accepted statistical concepts.

It is possible, as shown in this report, to derive the function describ-
ing the variation of the variance as a function of radius using accepted
statistical concepts of fluid mechanics. This function is verified by the
data obtained,

14
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0.729 AND A REYNOLDS NUMBER OF 8510
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TABLE I

AVERAGE VALUES FOR VARIANCE
AND VELOCITY AT CENTERLINE

RUN -2

SERIES | Re o v Vv
4 | 4605 | 1.33 |26.86 | 20.93
5 | 7808 | 297 |45.82 | 35.49
8 | 8510 | 398 |50.25 | 38.68
9 | 9310 | 6.23 |54.02 | 42.32
10 | 8510 | 3.89 | 4984 | 38.68
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